skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chien, Eli"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the problem of determining the mutational support and distribution of the SARS-CoV-2 viral genome in the small-sample regime. The mutational support refers to the unknown number of sites that may eventually mutate in the SARS-CoV-2 genome while mutational distribution refers to the distribution of point mutations in the viral genome across a population. The mutational support may be used to assess the virulence of the virus and guide primer selection for real-time RT-PCR testing. Estimating the distribution of mutations in the genome of different subpopulations while accounting for the unseen may also aid in discovering new variants. To estimate the mutational support in the small-sample regime, we use GISAID sequencing data and our state-of-the-art polynomial estimation techniques based on new weighted and regularized Chebyshev approximation methods. 
    more » « less
  2. Hypergraphs are used to model higher-order interactions amongst agents and there exist many practically relevant instances of hypergraph datasets. To enable the efficient processing of hypergraph data, several hypergraph neural network plat- forms have been proposed for learning hypergraph properties and structure, with a special focus on node classification tasks. However, almost all existing methods use heuristic propagation rules and offer suboptimal performance on benchmark- ing datasets. We propose AllSet, a new hypergraph neural network paradigm that represents a highly general framework for (hyper)graph neural networks and for the first time implements hypergraph neural network layers as compositions of two multiset functions that can be efficiently learned for each task and each dataset. The proposed AllSet framework also for the first time integrates Deep Sets and Set Transformers with hypergraph neural networks for the purpose of learning mul- tiset functions and therefore allows for significant modeling flexibility and high expressive power. To evaluate the performance of AllSet, we conduct the most ex- tensive experiments to date involving ten known benchmarking datasets and three newly curated datasets that represent significant challenges for hypergraph node classification. The results demonstrate that our method has the unique ability to either match or outperform all other hypergraph neural networks across the tested datasets: As an example, the performance improvements over existing methods and a new method based on heterogeneous graph neural networks are close to 4% on the Yelp and Zoo datasets, and 3% on the Walmart dataset. Our AllSet network implementation is available online. 
    more » « less